

Grade Awarded	Mark Required		$\%$ candidates achieving grade
	$(/ 120)$	$\%$	
A	$77+$	64.2%	$\%$
B	$62+$	51.7%	$\%$
C	$48+$	40.0%	$\%$
D	$33+$	27.5%	$\%$
No award	<33	$<27.5 \%$	$\%$

Section:	Multiple Choice	Extended Answer	Project		
Average Mark:	15.7	125	50.4	$/ 95$	No Project in 2023

9	C	Positive ΔS value means an increase in disorder． 囚A burning solid carbon into the gas CO_{2} is an increase in disorder and exothermic $\boxtimes B$ water vapour turning into solid snowflakes is a decrease in disorder and exothermic ∇C liquid ethoxyethane（ether）evaporating into gas is endothermic and increases disorder XD two gases becoming one solid is a decrease in disorder and exothermic
10	A	Rate $=k[X][Y]$ means that both X and Y are first order and 1 molecule of each appears as reactants in the slow rate determining step．$\therefore X+Y \rightarrow$ intermediate The overall reaction is $X+2 Y \rightarrow Z$ so there must be a second step where the intermediate formed in（slow）rate determining step reacts with a further molecule of Y ．
11	A	The single carbon－carbon bond in alkanes is a sigma bond．Sigma bonds are formed by the end－on overlap of atomic orbitals along the axis of the covalent bond． In a non－polar covalent bond in an alkane，the bonding molecular orbital is symmetrical about the midpoint between two atoms． （Polar covalent bonds result from bonding molecular orbitals that are asymmetric about the midpoint between two atoms．）
12		XA blue－green light is absorbed and not transmitted．Only red colour is transmitted． 囚B electrons move from HOMO to LUMO to absorb a wavelength of light $\boxtimes C$ electrons move from HOMO to LUMO and blue－green light absorbed and red transmitted ®D electrons move from HOMO to LUMO to absorb a wavelength of light
13		区A ethanol contains $\mathrm{O}-\mathrm{H}$ bonds and has hydrogen bonding between molecules 区B ethylamine contains N－H bonds and has hydrogen bonding between molecules $\boxtimes C$ ethanoic acid contains $\mathrm{O}-\mathrm{H}$ bonds and has hydrogen bonding between molecules VD ethoxyethane has no $\mathrm{N}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ or $\mathrm{H}-\mathrm{F}$ bonds and no hydrogen bonding in pure substance
14	A	
15	C	 － $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}$ is an aldehyde called 2－methylbutanal － LiAlH_{4} is the reducing agent lithium aluminium hydride －Aldehydes are reduced to primary alcohols by LiAlH_{4}
16	B	$\begin{aligned} & \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}+\mathrm{NH}_{3} \rightarrow \\ & \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}+\mathrm{NH}_{3} \rightarrow \end{aligned} \underset{\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}_{2}}{\mathrm{X}} \rightarrow \overrightarrow{C_{4} \mathrm{H}_{9} \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}}$ ख $A \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ has a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$ $\mathrm{B} \mathrm{BH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}$ has a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$ खC CH $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ has a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$ 凹D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COONH}_{2}$ has a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$

		Ni^{2+} ion:	$1 \mathrm{~s}^{2} 2$	${ }^{6} 3 s^{2} 3 p$			
$5 b$	Hexaamminenickel(II)						
		Neutral ligands include: Negative Ligands include:				Central Ion:	Charge:
		Ligand $\mathrm{H}_{2} \mathrm{O}$ NH_{3} CO	Name aqua ammine carbonyl	Ligand Chloride Cl^{-} Cyanide CN^{-1} Nitrite NO_{2}^{-}	Name chlorido cyanido nitrito		
$5 C(i)$	Bidentate	A bidentate ligand has two parts of the ligand that can donate pairs of electrons to the central metal ion at the centre of the complex.					
$5 C$ (ii)	6	6 different pairs of electrons across three bidentate ligands are donated to central metal ion. This gives a co-ordination number of 6 .					
		$1^{\text {st }}$ mark: Electrons move to higher energy d orbitals					
5d(i)	Answer to include:	$2^{\text {nd }}$ mark:		purple ligh 380-400n red and bl complemen	m light ue light ntary col	$\text { an (to green) } \quad \text { absor }$	
$5 d(i i)$	One answer from:			onia abso	rbs $\{$	shorter wavelengt higher energy higher frequency uv	
$6 a(i)$	$K=\frac{[H I]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$	For reaction: $\quad a A+b B \rightleftharpoons c C+d D \quad K=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$					
$6 a(i i)$	981.8						
$6 a(i i i)$	207.2	$\begin{aligned} E=\frac{L \times h \times c}{\lambda} & =\frac{6.02 \times 10^{23} \mathrm{~mol}^{-1} \times 6.63 \times 10^{-34} \mathrm{Js} \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{578 \times 10^{-9} \mathrm{~m}} \\ & =207159 \mathrm{~J} \mathrm{~mol}^{-1} \\ & =207.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$					
6b(i)	Buchner Funnel or Hirsch Funnel or Sintered Glass Funnel	The Buchner funnel allows vacuum filtration to place which speeds up the flow of filtrate through the Buchner funnel. The reduced pressure provides a faster means to separate precipitate from filtrate					

7 C (ii)	99.7\%	$\begin{aligned} \mathrm{pH} & =7.9 \\ -\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & =7.9 \\ \log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & =-7.9 \\ {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =10^{-7.9} \\ {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =1.26 \times 10^{-8} \mathrm{~mol} \mathrm{l}^{-1} \end{aligned}$				$\begin{aligned} & \% \text { Increase }=\frac{\text { difference in value }}{\text { original value }} \times 100 \\ & \% \text { Increase }=\frac{1.26 \times 10^{-8}-6.31 \times 10^{-9}}{6.31 \times 10^{-9}} \times 100 \\ & \% \text { Increase }=\frac{6.29 \times 10^{-9}}{6.31 \times 10^{-9}} \times 100 \\ & \% \text { Increase }=99.7 \% \end{aligned}$		
7 d (i)	Answer to include:	Reacting known mass of seashells with an excess volume of a hydrochloric acid of known concentration		The resulting mixture is then titrated with sodium hydroxide to work out the number of moles of hydrochloric acid in excess		From the initial number of moles of hydrochloric acid, the number of moles used in the reaction can be determined.		The initial number of moles of the calcium carbonate in seashells being analysed can then be calculated.
7d(i)	Answer to include: All 4 points $=2$ marks 2 or 3 points $=1$ mark	React calcium carbonate /shells with HCl/acid		Known quantity/moles/volume and concentration of $\mathrm{HCl} /$ acid			idea of excess $\mathrm{HCl} /$ acid	titrate with NaOH .
7 d (ii)	Repeat using pure calcium carbonate	In a control experiment, a known mass of pure calcium carbonate can assess the accuracy of the reaction method.						
$8 \mathrm{a}(\mathrm{i})$	15-crown-5	In example given 18-crown-6: 18 refers to the number of atoms in the ring and 6 refers to number of oxygens The question: 15 atoms in the ring and 5 oxygen atoms in ring $\therefore 15$-crown- 5						
$8 a(i i)$		Element Member of Group 1 Number of O in ether Name						
		Li		$1^{\text {st }}$		4	12-cr	wn-4
		Na		$2^{\text {nd }}$		5	15-cr	wn-5
		K		$3^{\text {rd }}$		6	18-cr	wn-6
$8 a(i i i)$	Can donate lone (non-bonding) pairs of electrons	Ligands have lone pairs of electrons which for dative covalent bonds by donating pairs of electrons to the central metal ion forming dative covalent bonds. In crown ethers, the lone pair electrons are pointing into the centre of the ring where the metal ion is located.						
$8 \mathrm{~b}(\mathrm{i})$	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{4}$							
8 b (ii)	Condensation or nucleophilic substitution	H from one molecule and Cl from next molecule are removed as the molecules join together forming HCl						
8c	$\begin{gathered} 2.43 \times 10^{-3} \\ \text { or } \\ 0.0024 \end{gathered}$	$\text { no. of } \mathrm{mol}=\frac{\text { mass }}{\mathrm{gfm}}=\frac{0.225}{264}=8.52 \times 10^{-4} \mathrm{~mol}$ As K^{+}ions and 18-crown-6 are in 1:1 ratio: $8.52 \times 10^{-4} \mathrm{~mol} \mathrm{~K}$ ions $\text { concentration }=\frac{\text { no. of } \mathrm{mol}}{\text { volume }}=\frac{8.52 \times 10^{-4} \mathrm{~mol}}{0.350 \text { litres }}=2.43 \times 10^{-3} \mathrm{~mol} \mathrm{t}^{-1}$						

9	Open Question to include:			$\begin{aligned} & \text { K answer } \\ & \text { limited } \\ & \text { f the chemistry } \\ & \text { indidate has made } \\ & \text { (s) which are } \\ & \text { situation, showing } \\ & \text { ittle of the } \\ & n \text { the problem is } \end{aligned}$
$10 a(i)$	One answer from:	Adjacent (unhybridised) p orbitals that overlap/form a molecular orbital across a system/number of carbon atoms	Electrons delocalised across a number of carbon atoms Alternating single and double bonds	
$10 a(i i)$	sp	$C=C$ double bonds contain sp^{2} hybridisation with a $C-C$ sigma bond down the axis of the bond and side on overlap of unhybridised orbitals to form the pi bond.		
$10 a(i i i)$	One from:			
$10 \mathrm{~b}(\mathrm{i})$	Repulsion from pi electrons or double bond	The electrons $\mathrm{Cl}-\mathrm{Cl}$ bond are repelled by the pi electrons in the $C=C$ double bond and this polarises the $\mathrm{Cl}-\mathrm{Cl}$ bond forming a $\delta+$ end and $a \delta$ - end		
10 b (ii)	-			
10 b (iii)A	Restricted rotation/ lack of free rotation (around the single bonds) in the ring	The ring of six carbons prevents the rotation so there are two locked positions for side groups above and below the ring with no rotation. - if both side groups are above ring then this is the cis geometric isomer - if one side group is above ring and the other side group below ring then this is the trans geometric isomer. A $C=C$ double bond also has a lack or rotation in the bond due to the Pi bond so that also has the geometric isomers		

11c	Ethanoic acid Ethanoic anhydride Ethanoyl chloride	Amines react with carboxylic acids to form alkylammonium salts and form an amide when heated.					
11d	Answer to include:	2 marks for all 4 points in table.		1 mark for 2 or 3 points in table			
		minimum/small volume (of solvent)		hot water/solvent		cool	filter
$11{ }^{\text {(i) }}$ A	$C=O$ or Carbonyl						
11e(i)B	Overlap of peaks from different bonds with one example as shown:	O-H peak in same region as $\left\{\begin{array}{l}\mathrm{N}-\mathrm{H} \\ \mathrm{C}-\mathrm{H}\end{array} \quad\right.$ or $\quad \mathrm{N}-\mathrm{H}$ peak in same region as $\left\{\begin{array}{l}\mathrm{O}-\mathrm{H} \\ \mathrm{C}-\mathrm{H}\end{array}\right.$					
$11 e^{\text {(ii) }}$ A	$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}$ circled:						
		Chemical Shift (ppm)	2.1	6.7	7.3	9.1	9.8
		Height of Curve (mm)	50	33	33	17	17
		No of Hydrogens in Group	3	2	2	1	1
		Multiplet	singlet	doublet	doublet	singlet	singlet
11e(ii)B		No of Hydrogen next door	0	2		0	0
	Doublet	Group	$\mathrm{CH}_{3} \mathrm{C}=0$	ArH?		$-\mathrm{HN}-\mathrm{C}=\mathrm{O}$	$\mathrm{Ar}-\mathrm{OH}$
	Doublet						
11e(iii) A	Sample is pure with no extra peaks or only 5 (hydrogen) peaks	The same number of peaks with the same chemical shift indicated the sample is pure as contaminants would add other peaks to the NMR spectrum as they would containing other chemical groups.					
11 e(iii)B	Mixed melting point or TLC or Chromatography	The melting point of the recrystalised paracetamol is measured using melting point apparatus. Pure paracetamol is added to see if the melting point is the same. If the melting point alters then the sample is not pure.					

