

2023 Marking Scheme

Grade	Mark R	equired	% condidate	s achieving grade
Awarded	(/ ₁₂₀)	%		s achieving grade
A	77+	64.2%	2	27.2%
В	62+	51.7%	2	8.6%
С	48+	40.0%	2	2.8%
D	33+	27.5%	1	.4.6%
No award	<33	<27.5%		6.7%
Section:	Multiple	Choice	Extended Answer	Project
Average Mark:	15.	7 /25	50.4 /95 No Project in 2023	

20)2	3 /	Adv Higher Chemistry Marking Scheme
MC Qu	Answer	% Correct	Reasoning
1	D	89	 A Aufbau principle states that 4s fills before 3d shells B Aufbau principle states that 4s fills before 3d shells C 4s¹ only occurs when 3d is either half-filled 3d⁵ in Cr or completely full 3d¹⁰ in Cu D 4s is filled before 3d
2	C	68	LinearTetrahedralTrigonal PyramidalTrigonal Bipyramidal2445electron pairselectron pairselectron pairselectron pairs20403150bonding pairslone pairslone pairslone pairslone pairslone pairslone pairs
2	L	00	CI - Be - CI + H + H + CI - CI
3	В	95	⊠A s-block found in groups 1+2 ☑B p-block found in groups 3→0 ☑C d-block forum in transition metals between groups 2+3 ☑D f-block found in bottom 2 rows of Periodic Table
4	A	65	 A Heterogeneous catalysis work by adsorption of reactants onto active sites of catalyst and homogeneous catalyst are in same state as catalysts. B an incomplete d-subshell is required for the interaction of the catalyst with reactant(s) C heterogeneous catalyst is in a different state to the reactants D adsorption onto active siters is the mechanism of heterogeneous catalysts
5	D	47	 Halfway point of steep vertical region (neutralisation point) of line is approx. pH=6 ☑ A acidic pH at start of experiment ∴ alkali is being added to an acid ☑ B strong alkali/weak acid gives alkaline pH on neutralisation but pH is acidic at neutralisation ☑ C acidic pH at start of experiment ∴ alkali is being added to an acid ☑ D pH at neutralisation is acidic weak alkali and strong acid gives acidic pH on neutralisation
6	D	69	Term Bronsted-Lowry Definition acid Species which donates H* and becomes conjugate base base Species which accepts H* and becomes conjugate acid conjugate acid Species formed when base accepted an H* ion conjugate base Species formed when acid donated an H* ion H ₃ O* ions being absorbed by conjugate base turning back into acid Weak acid donates H ₃ O* ions and becomes conjugate base in the process.
7	A		$\square A$ reactions which are feasible have negative values of $\triangle G$ and equilibrium favours products $\blacksquare B$ a feasible reaction is one that tends towards the products rather than the reactants $\blacksquare C$ a reaction with a positive value for standard free energy ($\triangle G$) is not feasible $\blacksquare D$ a reaction with a positive value for standard free energy ($\triangle G$) is not feasible
8	В	46	$\begin{array}{cccc} \bullet & \frac{1}{2}N_2 & + & O_2 & \rightarrow & NO_2 & & \Delta G^\circ = +51.8 \ \text{kJ mol}^{-1} \\ \bullet & N_2 & + & 2O_2 & \rightarrow & N_2O_4 & & \Delta G^\circ = +97.7 \ \text{kJ mol}^{-1} \\ \bullet & N_2 & + & 2O_2 & \rightarrow & N_2 & + & 2O_2 & & \Delta G^\circ = -103.6 \ \text{kJ mol}^{-1} \\ \bullet & N_2 & + & 2O_2 & \rightarrow & N_2O_4 & & \Delta G^\circ = +97.7 \ \text{kJ mol}^{-1} \\ \hline & & & & & & & & & & & & \\ \hline & & & &$

Г

9	С	55	Positive ∆S value means an increase in disorder. ⊠A burning solid carbon into the gas CO₂ is an increase in disorder and exothermic ⊠B water vapour turning into solid snowflakes is a decrease in disorder and exothermic ⊠C liquid ethoxyethane (ether) evaporating into gas is endothermic and increases disorder ⊠D two gases becoming one solid is a decrease in disorder and exothermic
10	A	76	Rate = $k[X][Y]$ means that both X and Y are first order and 1 molecule of each appears as reactants in the slow rate determining step. $\therefore X + Y \rightarrow$ intermediate The overall reaction is X + 2Y \rightarrow Z so there must be a second step where the intermediate formed in (slow) rate determining step reacts with a further molecule of Y.
11	A	77	The single carbon - carbon bond in alkanes is a sigma bond. Sigma bonds are formed by the end-on overlap of atomic orbitals along the axis of the covalent bond. In a non-polar covalent bond in an alkane, the bonding molecular orbital is symmetrical about the midpoint between two atoms. (Polar covalent bonds result from bonding molecular orbitals that are asymmetric about the midpoint between two atoms.)
12	С	87	 A blue-green light is absorbed and not transmitted. Only red colour is transmitted. B electrons move from HOMO to LUMO to absorb a wavelength of light C electrons move from HOMO to LUMO and blue-green light absorbed and red transmitted D electrons move from HOMO to LUMO to absorb a wavelength of light
13	D	87	 ☑A ethanol contains O-H bonds and has hydrogen bonding between molecules ☑B ethylamine contains N-H bonds and has hydrogen bonding between molecules ☑C ethanoic acid contains O-H bonds and has hydrogen bonding between molecules ☑D ethoxyethane has no N-H, O-H or H-F bonds and no hydrogen bonding in pure substance
14	A	70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15	С	71	$\begin{array}{c} H H H H \\ H - C - C - C - C - C \\ H \\ H H \\ H - C - H \\ H$
16	В	63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

17	A	87	Methoxyp It has a ma ØA butanone CH3C B ethoxyethane (SC butan-2-ol CH3 D 2-methylpropa	Dlecular H2COCH3 CH3CH2OC CH(OH)CH	formula has a mol CH2CH3 ha H2CH3 has	of C4H ecular f s a mole a molec	1100 ormula o ecular fo cular for	rmula of (mula of C	4H10O		1 :—1-1 1	
			A		В			С			D	
			CH₂CHBr	(СНСІСНО	CH₃	CH₃	CH2CHC	CCI2	CH₃C(Cł	H₃)CHC	∶H₃
18	В	49		H CI. Br H ^r	c=c	H CH₃	H₅C₂. H ⁻)c=c	Cl	H ₃ C H ₃ C	=c<	H CH₃
			bromoethane Left end of C=C double B has two H groups attack This prevents it from be geometric isomer	pond hed. ing a	is-1-chlorop are two (non os, one on ead e C=C double s makes it a ge isomer	-identical) ch end of bond.	Left end has two This prev	chlorobut-: of C=C doub H groups att vents it from ometric isom	ole bond tached. 1 being a	Left end of (has two CH3 g This prevents	roups atta	bond ached.
19	A	47	☑A in mass spectro ☑B in infrared spe ☑C in melting point ☑D Proton NMR us	ctroscopy analysis,	, molecule a pure sul	has cer ostance	rtain bor will melt	ids stretc t first bu	:hed at t will fi	· certain wo reeze back	ivenumbe	
			Type of Drug	Binding	•				esponse			
20	D	65		•	-	•	•			body's natu	ral respor	nse
	U		Antagonist Enzyme Inhibitor	enzyme a	inding site		•	of the en:	•			
21	D	65	 ☑ A As doxepin is a ☑ B Molecule B is ir ☑ C Doxepin lacks t ☑ D Molecule D is a 	nly molec ncorrect a he -Cl gro	ule with C t bottom oup on top	atom a the nitr left of	t top, th ogen par molecule	is part no t is rotat c .: Cl not	ot in co fory an fin com	d will flip r nmon fragm	ound Ient	rugs
					Elem	ent	V	0				
					Mass	or %	61.4%	38.6				
22	В	87			No. of (divide %		61.4 50.9 = 1.21	<u>38.6</u> 16 = 2.41				
					Mole ((divide ti by smalles	hrough	1.21 1.21 = 1	2.41 1.21 = 1.99 =2				
					Empirical	Formula	V	O ₂				

			A primary standard	l must:										
be available in a be stable when							be			have	e a reasonably			
			high state	e of purity	solid ar	nd in	solution		solub	le			high GFM	
			Examples		carbonate 12CO3		hy		ed oxalic ac 204·2H2O	id	potas		nydrogen phthalat¢ ⊣(C8H4O4)	e
			of primary		12003			H2C	,204°2H20			N	-1(C8F14O4)	
<u></u>	~	40	standards include:		nitrate		I	potas	sium iodate		рс		um dichromate	
23	С	49	include:	Ag	JNO3				KIO3				$K_2Cr_2O_7$	
			🗷 A calcium cart	oonate is in	soluble and	d the	erefore r	not a	primary s	tanc	lard			
			🗷 B Hydrochlori	c acid										
			☑C sodium carb	onate meet	s the four	crit	eria liste	ed in	table abo	ve				
			🗷 D Sodium hydi	roxide is no	ot a primar	'y ste	andard a	s it ł	nas a relat	ively	low GFM	, is u	instable as a soli	d
			(absorbs mo	oisture) and	lunstable	as a	solution.	Sod	lium hydro:	xide	solution	must	be standardised	Ł
			before bein	g used in vo	olumetric a	analy	sis.							
				42	0 ppm =	42	Omg C(J₂ ₽	ber 1kg (atn	nospher	e		
			1kg at	mospher	re = 0.42	2q (CO2							
24	В	61	5.1×10 ¹⁸ kg at	•		-		5.1×	<10 ¹⁸					
	0	-				-	10 ¹⁸ q (
							5							
							¹⁵ kg C(
					Pb ²⁺	+	CrO4 ²⁻	\rightarrow	PbCrO ₄					
					1mol				1mol					
					PbCrO₄	+	2Cl ⁻	→	PbCl ₂	+	CrO4 ²⁻			
25	В	41			1mol				_		1mol			
			20	rO4 ²⁻ +	6I-	+	16H⁺	→	2Cr³⁺	+	3I2	+	8H₂O	
			2	mol							3mol			
			1	mol							1.5mol			

2023	2023 Adv Higher Chemistry Marking Scheme						
Long Qu	Answer	Reasoning					
1a (i)	Answer to include:	1 st mark: (Excited) electrons fall to a lower energy level 2 nd mark: Difference in energy levels corresponds to energy					
1a (ii)	m₅ 1	Li has electronic configuration of $1s^2 2s^1$. Li ⁺ has electronic configuration of $1s^2$ n 1s subshell is in 1 st shell and has a value for Principal quantum number (n) of n=1 l s subshells have an angular momentum quantum number (l) of l =0 m _l s subshells have a magnetic quantum number (m _l) of -l to +l \therefore 0 m _s All electrons either have a spin magnetic quantum number of either $+\frac{1}{2}$ or $-\frac{1}{2}$					
1a(iii)A	+7 or VII	Oxidation state of O = -2 \therefore 4xO in ClO ₄ ⁻ combine to equal -8. Perchlorate ClO ₄ ⁻ has charge of -1 over whole ion \therefore the oxidation state of Cl must be +7					
1a(iii)B	9	BondNumber of bondsNumber of sigmaNumber of Pi bondsN-H3 $3 \times 1 = 3$ 0N-C110C=N111C-N110N-N2 $2 \times 1 = 2$ 0N=N111Total9					
1b(i)A	-1648	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)}$ = (2x-824) - (4x0) + (3x0) = -1648 - 0 = -1648 kJ mol ⁻¹					
1b(i)B	-549.4	$\Delta S^{\circ} = \Sigma S^{\circ}_{(\text{products})} - \Sigma S^{\circ}_{(\text{reactants})}$ $= (2 \times 87.4) - (4 \times 27.3) + (3 \times 205)$ $= 174.8 - (109.2 + 615)$ $= 174.8 - 724.2$ $= -549.4 \text{ J K}^{-1} \text{ mol}^{-1}$					
1b(i)C	3000	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-1648 \times 1000 \text{ J mol}^{-1}}{-549.4 \text{ J K}^{-1} \text{ mol}^{-1}} = 3000 \text{ K}$					
1b(ii)	2694g	gfm NaClO ₃ = (1x23)+(1x35.5)+(3x16) = 23+35.5+48 = 106.5g 1 person in 1 minute uses 0.380litres oxygen 5 persons in 1 minute uses 0.380litres oxygen x 5 = 1.9litres oxygen 5 persons in 1 hour uses 1.9litres oxygen x 60 = 114litres oxygen 5 persons in 8 hours uses 114litres oxygen x 8 = 912litres oxygen 36litres oxygen produced from 1mol NaClO ₃ 912litres oxygen produced from 1mol NaClO ₃ x ⁹¹² / ₃₆ = 25.3mol NaClO ₃ mass = no. of mol x gfm = 25.3 x 106.5 = 2694g					
2a(i)	1 st Order	Experiments[HgCl2][C2O42-]Effect of RateOrder3+2x2samex2[HgCl2]1					
2a(ii)	2 nd Order	Experiments[HgCl2] $[C_2O_4^{2-}]$ Effect of RateOrder1+2samex2x4 $[C_2O_4^{2-}]^2$					

2b	rate = k[HgCl ₂][C ₂ O ₄ ²⁻] ²	rate = k × [HgCl ₂] ¹ × [C ₂ O ₄ ²⁻] ² = k[Hg	gCl ₂][C ₂ O ₄ ²⁻] ²			
2	2.56×10 ⁻⁴ l ² mol ⁻² s ⁻¹	Using Experiment 1 (althou	igh experiments 2+3 can als	so be used)			
2c(i)	0.000256 l ² mol ⁻² s ⁻¹	$k = \frac{\text{rate}}{[\text{HgCl}_2][C_2O_4^{2^-}]^2} = \frac{0.860 \times 10^{-6} \text{ mol } l^{-1} \text{ s}^{-1}}{0.0840 \text{ mol } l^{-1} \times (0.200)^2 \text{ mol}^2 l^{-2}} = 2.56 \times 10^{-4} l^2 \text{ mol}^2$					
2c(ii)	0.508	$2.11 \times 10^{-6} = 2.56 \times 10^{-4}$ $[C_2 O_4^{2-}]^2 = \frac{2.11}{2.56 \times 10^{-4}}$]² ² l-²			
3a (i)	Add more/excess calcium choride solution (to see if further precipitation occurs)	more reactant is added to showing the reaction is inc	s to be complete, the mixtu see if there is any further omplete and further reacto itation/cloudiness then the	precipitation/cloudiness			
3a (ii)	The precipitate should be dried/heated in an oven and weighed until constant mass	water remains in the preci drive off water. When the desiccator and the mass m desiccator and weight on b	pitate residue. Heating the precipitate is removed fro easured in a balance. Heatin alance is repeated until cor	m the oven it is cooled in a ng in oven, cooling in a 1stant mass is achieved.			
3b	0.59	no. of mo (COOH)2 + 1mol 5.85x10 ⁻⁴ mol gfm (COOH)2 = (2x12)+(4x mass = no. c	$2 \times 12) + (4 \times 16) = 40.1 + 24 + 64$ $I = \frac{mass}{gfm} = \frac{0.075}{128.1} = 5.8$ $CaCl_2 \rightarrow Ca(CC)$ $1m$ 5.85×10 $16) + (2 \times 1) = 24 + 64 + 2 = 90g$ of mol × gfm = 5.85 × 10 ⁻⁴ × 90g of mol × gfm = 5.85 × 10 ⁻⁴ × 90g of leaves × 100 = $\frac{0.09}{8.9}$	35×10 ⁻⁴ mol DO) ₂ + 2HCl ¹⁰¹ 0 ⁻⁴ mol 90 = 0.0527g			
3c	One answer from:	Not all oxalic acid extracted out Not enough CaCl₂adde	for long enough	t all precipitated out/not gone to completion tural variation in samples			
		3 mark answer Demonstrates a good	2 mark answer Demonstrates a reasonable	1 mark answer Demonstrates a limited			
4	Open Question to include:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			
 5a 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ Charge in Nickel ion = +2 as H₂O is a neutral ligand so +2 complex comes from Ni²⁺ ion. Ni atom: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ 4s² 4s electrons are removed before 3d electrons Ni²⁺ ion: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ 							

		Hexaamminenickel(II) = [Ni(NH3)6] ²⁺
5b	Hexaamminenickel(II)	no. of NH3 metal charge on ligands ligand name metal ion Neutral ligands include: Central Ion: Charge:
		LigandNamePositive Complex: metals keep their nameCharge of central ion is converted into roman numerals and put e.g. Cuprate, Ferrate, CobaltateCharge of central ion is converted
5 c(i)	Bidentate	A bidentate ligand has two parts of the ligand that can donate pairs of electrons to the central metal ion at the centre of the complex.
5c(ii)	6	6 different pairs of electrons across three bidentate ligands are donated to central metal ion. This gives a co-ordination number of 6.
5d(i)	Answer to include:	1 st mark: Electrons move to higher energy d orbitals purple light 380-400nm light 2 nd mark: 380-400nm light complementary colour (to green) absorbed
5d(ii)	One answer from:	Ammonia absorbs digher energy higher frequency uv
6a (i)	$K = \frac{[HI]^2}{[H_2][I_2]}$	For reaction: $aA + bB \Longrightarrow cC + dD$ $K = \frac{[C]^{c} [D]^{d}}{[A]^{\alpha} [B]^{b}}$
6a(ii)	981.8	$I_{2} \text{ at start} = 0.25 \text{ mol} \qquad I_{2} \text{ at equilibrium} = 0.015 \text{ mol} \\ \therefore I_{2} \text{ reacted} = 0.25 \text{ mol} - 0.015 \text{ mol} = 0.235 \text{ mol} \\ \begin{array}{c} H_{2} + I_{2} & \longrightarrow & 2HI \\ 1 \text{ mol} & 1 \text{ mol} & 2 \text{ mol} \\ 0.235 \text{ mol} & 0.235 \text{ mol} & 0.470 \text{ mol} \\ (\text{reacted}) & (\text{reacted}) & (\text{formed}) \end{array}$ $H_{2} \text{ remaining at equilibrium} = 0.25 \text{ mol} - 0.235 \text{ mol} = 0.015 \text{ mol} \\ K_{2} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} = \frac{(0.470)^{2}}{0.015 \times 0.015} = 981.8$
6a (iii)	207.2	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{578 \times 10^{-9} \text{m}}$ = 207159 J mol ⁻¹ = 207.2 kJ mol ⁻¹
6b(i)	Buchner Funnel or Hirsch Funnel or Sintered Glass Funnel	The Buchner funnel allows vacuum filtration to place which speeds up the flow of filtrate through the Buchner funnel. The reduced pressure provides a faster means to separate precipitate from filtrate

		gfm I2 = (2x126	.9) = 253.8g				
		n o. of mol I ₂ = $\frac{mass}{gfm}$ = $\frac{285}{253.8}$ = 1.12mol					
		т					
			$_2 + H_2S \longrightarrow$				
6b(ii)	87.4%	1m 1.12		2mol 2.25mol (theoretical)			
		gfm HI = (1×1)+	(1x126.9) = 1+126.9 = 127.9g				
			p. of mol HI = $\frac{mass}{gfm} = \frac{25}{127}$	1 = 1.96 mol (actual)			
			-				
		% \	/ield =x100 =x100 =	<u>1.50</u> ×100 = 87.4%			
		Notes on examp	le: yl -OH groups become carbon	vl (=0 arouns			
			gle bond between carbons with				
		ң н	H in C=O	H H H			
		H~c~~~	с—он				
	- НИННОН		bond breaks reaction	H G			
6c	С <u>•</u> Н		C-OH				
	н ннн н	н йн	C H -OH turns in C=O	н н н РС-н			
			н́н	H H straighten			
				∼ ННННОН			
				Н ННН Н			
	Concentration of	Therease in tem	perature favours the endothe	rmic reaction			
7a	dissolved CO2 decreases as equilibrium	Reverse reactio	n is favoured as reverse react	ion is endothermic			
	moves to left.	Revere reaction	decreases H2CO3(aq) concentr	ation and releases CO _{2(g)} into air.			
	Carbonic acid is a weaker acid as it has	Weak Acid	Kα	рКa			
	higher pKa / lower Ka	Carbonic acid	4.5×10 ⁻⁷	6.35			
7 b(i)	or	Ethanoic acid	1.7×10 ⁻⁵	4.76			
	Ethanoic acid is a stronger acid as it has	Conclusion	Carbonic acid is a lower strength acid/weaker acid as	Carbonic acid is a lower it strength acid/weaker acid as it			
	lower pKa / higher Ka		has a <i>smaller</i> value of Ka	has a higher value of pKa			
		H2CO3(aq)	+ H ₂ O(l) =	H3O ⁺ (aq) + HCO3 ⁻ (aq)			
7b(ii)	Base	Acid	Base	Conjugate Acid Conjugate base			
, D(ii)	(or proton acceptor)	loses a proton/H⁺	gains a proton/H⁺	formed when formed when base accepts a acid loses a			
		(proton donor)	(proton acceptor)	proton/H⁺ proton/H⁺			
			pH = 8.				
7~	6.31×10 ⁻⁹		-log10[H3O ⁺] = 8. log10[H3O ⁺] = -8.3				
7c(i)	0.51710						
		$[H_3O^+] = 10^{-8.2}$ $[H_3O^+] = 6.31 \times 10^{-9} \text{ mol } l^{-1}$					

7c(ii)	99.7%	pH = 7.9 -log ₁₀ [H ₃ O ⁺] = 7.9 log ₁₀ [H ₃ O ⁺] = -7.9 [H ₃ O ⁺] = 10 ^{-7.9} [H ₃ O ⁺] = 1.26×10 ⁻⁸ mol l ⁻¹	% Increase = or % Increase = <u>1.26x</u>				
7d(i)	Answer to include:		hydrochloric acid, de the number of				
7d(i)	Answer to include: All 4 points = 2marks 2 or 3 points = 1 mark		//	a of titrate HCl/acid with NaOH.			
7d(ii)	Repeat using pure calcium carbonate	In a control experiment, a known mas accuracy of the reaction method.	ss of pure calcium carb	onate can assess the			
8a (i)	15-crown-5	In example given 18-crown-6: 18 refers to the number of atoms in t The question: 15 atoms in the ring and	-				
8a (ii)	Also accepted:	ElementMember of Group 1NuLi1stNa2ndK3rd	lumber of O in ether 4 5 6	Name 12-crown-4 15-crown-5 18-crown-6			
8a (iii)	Can donate lone (non-bonding) pairs of electrons	Ligands have lone pairs of electrons w pairs of electrons to the central mete In crown ethers, the lone pair electro where the metal ion is located.	tal ion forming dative c	ovalent bonds.			
8b(i)	$C_6H_{14}O_4$	НН НН НН HO-C-C-O-C-C-O-C-C-OH 					
8b(ii)	Condensation or nucleophilic substitution	H from one molecule and Cl from next molecule are removed as the molecules join together forming HCl					
8c	2.43×10 ⁻³ or 0.0024	gfm 18-Crown-6 = 264g no. of mol = $\frac{mass}{gfm}$ = $\frac{0.225}{264}$ = 8.52×10 ⁻⁴ mol As K* ions and 18-crown-6 are in 1:1 ratio: 8.52×10 ⁻⁴ mol K* ions concentration = $\frac{no. of mol}{volume}$ = $\frac{8.52 \times 10^{-4} mol}{0.350}$ = 2.43×10 ⁻³ mol l ⁻¹					

		3 mark answer	2 mark answer	1 mark answer		
9	Open Question to include:	Demonstrates a <u>good</u> understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.		
10a(i)	One answer from:	Adjacent (unhybridised overlap/form a molecular system/number of c	r orbital across a acros a acros a across a across a across a across a acro	s delocalised Alternating a number of single and on atoms double bonds		
10a(ii)	sp²	bond down the axis	ontain sp² hybridisat of the bond and side Is to form the pi bon	on overalp of		
10a(iii)	One from:	(\mathbf{N})				
10b(i)	Repulsion from pi electrons or double bond		ond are repelled by the this polarises the Cl-Cl	e pi electrons in the bond forming a $\delta \text{+}$ end		
10b(ii)	+CI	$\delta - \delta + CI$		+ $+CI^-$ + CI^- CI CI		
10b(iii)A	Restricted rotation/ lack of free rotation (around the single bonds) in the ring	positions for side group	prevents the rotation so s above and below the rin ups are above ring then t p is above ring and the ot the trans geometric ison has a lack or rotation in the geometric isomers	ng with no rotation. his is the cis geometric ther side group below mer.		

10b(iii)BImage: constraint of the carbon is a structure of the carbon is a structure of the carbon is a structure of the carbon is a symmetrical and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring.10c(i)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(ii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(ii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(ii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(ii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(ii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(iii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(iii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(iii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(iii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(iii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(iii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.10c(iii)Diagram showing: I mark for curve around the ring.Imark for curve around the ring.111a(ii)Noz*Imark for curve arou	$11-dichlorocyclohexane attached.$ $11-dichlorocyclohexane has no carbons with four different groups. Cinds two chlorine atoms and the other carbons each have two hydrogens. 1.4-dichlorocyclohexane lacks a chiral carbons as Ci and Ci each have a hydrogen of om and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 1.4-dichlorocyclohexane the ring. 1.4-dichlorocyclohexane tarbons as Ci and Ci each have a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 1.4-dichlorocyclohexane the ring. 1.4-dichlorocyclohexane tarbons as Ci and Ci each have a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 1.4-dichlorocyclohexane tarbons as Ci and Ci each have a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 10c(ii) 10c(ii) 1.08 \frac{\delta^{*}}{l mek for carbons is symmetrical and are identical regardless of which way you go around the ring. q = partial charge x e = 0.178 \times 1.60 \times 10^{-19} C = 2.848 \times 10^{-20} C m = 0.127 \times 10^{-10} m = 3.62 \times 10^{-30} C m = 1.08 \text{ D} 11a(ii) NO_{2^{*}} 11a(ii) NO_{2^{*}} 11a(ii) NO_{2^{*}} \frac{OH}{OH} 11a(ii)B \frac{OH}{OH} \frac{OH}{OH} 11a(ii)B \frac{OH}{OH} \frac{OH}{OH}$			I					
$10b(iii)B \xrightarrow{\text{a} < \text{c}} (1-i) \text{c} (1-i) $	$10b(iii)B \xrightarrow{0} (1-dichiorocyclohexane has no carbons with four different groups. C_1 has two chlorine atoms and the other carbons each have two hydrogens. 1.1-dichiorocyclohexane lacks a chiral carbons as C_1 and C_4 each have a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 10c(i) Diagram showing: 1 mark for carbo carbo carbon determine determine$			An optical isomer has a	chiral carbon with four	r different groups			
$10b(iii)B = 1.1-dichlorocyclohexane has no carbons with four different groups. Chas two chlorine atoms and the other carbons each have two hydrogens. 1.4-dichlorocyclohexane lacks a chiral carbons as C1 and C4 each have a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 10c(i) Diagram showing: 1.arek for carbon sing the ring. 10c(ii) 1.08 \begin{cases} \delta^{+} & \delta$	10b(iii)B = 1.1-dichlorocyclohexane has no carbons with four different groups. Cinds two chlorine atoms and the other carbons each have two hydrogens. 1.4-dichlorocyclohexane lacks a chiral carbons as C, and C, each have a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the time. Index for carbon groups and the time. Index for carbon groups are index for carbon groups at the time. Index for carbon groups at the time at the time. Index for carbon groups at the time at the time. Index for carbon groups at the time at the time. Index for carbon groups at		1,1-dichlorocyclohexane	attached.					
10b(iii)BImage: constraint of the order of the example	10b(iii)BImage for a finite formulahas two chlorine atoms and the other carbons each have two hydrogens.10b(iii)BImage for any action of a chlorine atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring.10c(i)Diagram showing:Image for curve arouse in mark for curve arouse in mark for correct intermediateImage for curve arouse in the ring.10c(ii)Image for curve arouse in mark for correct intermediateImage for curve arouse in a correct intermediateImage for curve arouse in the oxygen in a correct intermediate10c(ii)1.08Image for curve arouse in the oxygen in a correct intermediateImage for curve arouse in the oxygen in a correct intermediate10c(ii)1.08Image for curve arouse in the oxygen in a correct intermediateImage for curve arouse in the oxygen in a correct intermediate10c(ii)1.08Image for curve arouse in the oxygen in a correct intermediateImage for curve arouse in the oxygen in a correct intermediate11a(ii)NO2*Image for curve arouse in the oxygen in the correct arouse arou		ଘ୍ୁପ						
10b(iii)B indext for card and for a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 10c(i) Diagram showing: 1 mark for card around it is ring. 1 mark for c	10b(iii)B index for carbon is involve concentrated intrice and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 10c(i) Diagram showing: 1 mark for carbon method $\delta + \delta +$								
14-dichlorocyclohexane lacks a chiral carbons as C1 and C4 each havea hydrogen atom and a chlorine atom but the ring of carbons issymmetrical and are identical regardless of which way you go aroundthe ring. $10C(i)$ Diagram showing: I mark for correct intermediate I mark for	$1.4 -dichlorocyclohexane lacks a chiral carbons as C_1 and C_4 each have a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring.1.4 -dichlorocyclohexane$ $1.4 -dichlorocyclohexane$ $4 -dichlorocyclo$	104 000			and the other carbons	each nave two			
$1.4-dichlorocyclohexane lacks a chiral carbons as t_and t_a cach have a divergence lacks a chiral carbon as t_and t_a cach have indication and a chiral carbon as t_and t_a cach have symmetrical and are identical regardless of which way you go around the ring. 10C(i) Diagram showing:1 mark for curve measure1 mark for curve intermediate1 mark for curve intermediate1 mark for correct intermediate1 mark for curve intermediate1 mark for correct intermediate1 mark for curve $	11a(i) Reduction Rescue to the solution of t	10D(m)R		nyarogens.					
a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring. 10c(i) Diagram showing: 1 mark for carrect intermediate 10c(ii) 1.08 10C(ii) 1.08 10C(ii) 1.08 10C(ii) 1.08 10C(ii) 1.08 10C(ii) 1.08 11a(ii) A 11a(ii) A 11a(ii) B 11a(ii) B 11a(ii) B 11a(ii) B 11a(ii) B 11a(ii) C 11b Deduction 11b De	$10c(i)$ $10c(i)$ 1.08 $10c(i)$ 1.08 $10c(i)$ 1.08 $\frac{\delta^{2}}{1 \text{ mark for curry arrows}}_{1 \text{ mark for curry arrows}}$			1,4-dichlorocyclohexane	lacks a chiral carbons	as C1 and C4 each have			
14-dickloracyclohexane the ring. $10c(i) Diagram showing: 1 mark for curly arrows 1 mork for curly arrows 1 more arro$	$14-dichlorocyclohexane the ring.$ $10c(i) \begin{array}{c} \text{Diagram showing:} \\ 1 \text{ mark for curvy arrows} \\ 1 \text{ mark for curve mediate} \end{array}$ $\begin{array}{c} e = 1.60 \times 10^{-9} C \\ Q = 2.848 \times 10^{-20} C \\ P = 0.178 \times 1.60 \times 10^{-19} C = 2.8488 \times 10^{-20} C \\ Q = 2.848 \times 10^{-20} C \\ P = 0.127 \text{ m} = 0.127 \times 10^{-10} \text{ m} = 3.62 \times 10^{-30} \text{ cm} \\ \mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} \text{ m} = 3.62 \times 10^{-30} \text{ cm} \\ 3.34 \times 10^{-30} \text{ Cm} = 1 \text{ D} \\ 3.62 \times 10^{-30} \text{ Cm} = 1 \text{ D} \\ 3.62 \times 10^{-30} \text{ Cm} = 1 \text{ D} \\ 3.62 \times 10^{-30} \text{ Cm} = 1 \text{ D} \\ 13.62 \times 10^{-30} \text{ Cm} = 1 \text{ D} \\ 11 \text{ a}(i) \text{ NO2}^{+} \text{ HNO3} + \text{ H}_2 \text{ SO4} \longrightarrow \text{ NO2}^{+} \text{ H}_3 \text{ O}^{+} \text{ H} \text{ HSO4}^{+} \\ 11 \text{ a}(i) \text{ NO2}^{+} \text{ HNO3} + \text{ H}_2 \text{ SO4} \longrightarrow \text{ NO2}^{+} \text{ H}_3 \text{ O}^{+} \text{ H} \text{ HSO4}^{+} \\ are curved arrested arrowd arrows arrested arrow arrowd arrow arrowd arrow arro$			a hydrogen atom and a d	chlorine atom but the r	ing of carbons is			
10c(i) $1 liagram showing:$ $1 mark for curly arrows$ $2 mark for curly arrows$ $2 mark for curly arrows$ $1 loc(ii)$ 1.08 $2 mark for curly arrows$ $1 loc(iii)$ 1.08 $2 mark for curly arrows$ $2 mark for arrows$ $2 mark for arrows$ $2 mark for arrows$ $2 mark for arrows$ $2 ma$	$10c(i) \begin{array}{c} 1 \text{ biagram showing:} \\ 1 \text{ mark for curve arrows} \\ 1 \text{ mark for curve intermediate} \end{array} \qquad $			symmetrical and are ide	ntical regardless of wh	nich way you go around			
$10c_{(i)} \qquad \begin{array}{ c c } \hline \text{Diagram showing:} \\ \hline 1 \text{ mark for carry arrows} \\ \hline 1 \text{ mark for arrows} \\ \hline 1 $	10c(i) Diagram showing: I mark for curve arrows I mark		1.4-dichlorocyclohexane	the ring.					
$11a_{(ii)} A \xrightarrow{\oplus} OH \\ 11a_{(ii)} B \xrightarrow{\oplus} OH \\ 11a_{(ii)} B \xrightarrow{\oplus} OH \\ 11b \\ Peduction \\ 11b \\ Peduction \\ 11b \\ Peduction \\ 11b \\ Peduction \\ 0 \\ Peduction \\ Peduction \\ Period \\ Per$	$10c(ii) = 1.08 \qquad \qquad$	10c(i)	Diagram showing:						
$10c(ii)$ 1.08 $e = 1.60 \times 10^{-19}C$ $Q = partial charge x e = 0.178 \times 1.60 \times 10^{-19} C = 2.848 \times 10^{-20} C$ $Q = 2.848 \times 10^{-20} C$ $r = 0.127 \text{ mm } = 0.127 \times 10^{-10} \text{ mm } = 1.27 \times 10^{-10} \text{ mm } = 3.62 \times 10^{-30} \text{ Cm}$ $\mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} \text{ mm } = 3.62 \times 10^{-30} \text{ Cm}$ $3.34 \times 10^{-30} \text{ Cm } = 1 \text{ D}$ $3.62 \times 10^{-30} \text{ Cm } = 1 \text{ D} \times \frac{3.62 \times 10^{-30} \text{ Cm}}{3.34 \times 10^{-30} \text{ Cm}}$ $= 1.08 \text{ D}$ $11a(i)$ NO_2^* $(11a(i))A$ $(11a(ii))A$ $(11a(ii))A$ $(11a(ii))B$ $(11a(ii$	$10c(ii)$ 1.08 $e = 1.60 \times 10^{-9}C$ $Q = partial charge x e = 0.178 \times 1.60 \times 10^{-19} C = 2.848 \times 10^{-20} C$ $Q = 2.848 \times 10^{-20} C$ $r = 0.127 \times 10^{-10} m = 3.62 \times 10^{-30} Cm$ $\mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} m = 3.62 \times 10^{-30} Cm$ $3.34 \times 10^{-30} Cm = 1 D$ $3.62 \times 10^{-30} Cm = 1 D \times \frac{3.62 \times 10^{-30} Cm}{3.34 \times 10^{-30} Cm}$ $= 1.08 D$ Nitration electrophilic substitution reactions involve concentrated nitric acid and forms the electrophile nitronium NO2 ⁺ ion $HNO_{3} + H_{2}SO_{4} \longrightarrow NO_{2}^{+} + H_{3}O^{+} + HSO_{4}^{-}$ $11a(ii)A$ $(i) A$ $($				+ Cl⁻	U I			
$10c(ii)$ 1.08 $Q = partial charge x e = 0.178 \times 1.60 \times 10^{-19} C = 2.848 \times 10^{-20} C$ $Q = 2.848 \times 10^{-20} C$ $r = 0.127 \times 10^{-10} \text{ m} = 1.27 \times 10^{-10} \text{ m}$ $\mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} \text{ m} = 3.62 \times 10^{-30} \text{ Cm}$ $3.34 \times 10^{-30} \text{ Cm} = 1 \text{ D}$ $3.62 \times 10^{-30} \text{ Cm} = 1 \text{ D} \times \frac{3.62 \times 10^{-30} \text{ Cm}}{3.34 \times 10^{-30} \text{ Cm}}$ $= 1.08 \text{ D}$ $11a(i) \text{ NO}_{2^{+}}$ $11a(ii) \text{ NO}_{2^{+}}$ 0 H $11a(ii) \text{ P}$ 0 H 0 H 0 H 0 H $11a(ii) \text{ P}$ 0 H 0	$10c(ii)$ 1.08 $Q = partial charge x e = 0.178 \times 1.60 \times 10^{-19} C = 2.848 \times 10^{-20} C$ $Q = 2.848 \times 10^{-20} C \qquad r = 0.127 \text{ nm} = 0.127 \times 10^{-9} \text{ m} = 1.27 \times 10^{-10} \text{ m}$ $\mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} \text{ m} = 3.62 \times 10^{-30} C \text{ m}$ $3.34 \times 10^{-30} C \text{ m} = 1 \text{ D}$ $3.62 \times 10^{-30} C \text{ m} = 1 \text{ D} \times \frac{3.62 \times 10^{-30} C \text{ m}}{3.34 \times 10^{-30} C \text{ m}}$ $= 1.08 \text{ D}$ $11a(i) \text{ NO}_{2^+}$ $11a(ii) \text{ A}$ $(P) \text{ OH}$ $11a(ii) \text{ A}$ $(P) \text{ OH}$ $11a(ii) \text{ B}$ $(P) \text{ OH}$ $(P) \text{ OH}$ $11a(ii) \text{ B}$ $(P) \text{ OH}$ $(P) $			e = 1.60×10 ⁻¹⁹ C		partial charge = 0.178			
$10c(ii)$ 1.08 $Q = 2.848 \times 10^{-20} C$ $r = 0.127 \text{ nm} = 0.127 \times 10^{-10} \text{ m} = 1.27 \times 10^{-10} \text{ m}$ $\mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} \text{ m} = 3.62 \times 10^{-30} \text{ Cm}$ $3.34 \times 10^{-30} \text{ Cm} = 1 \text{ D}$ $3.62 \times 10^{-30} \text{ Cm} = 1 \text{ D} \times \frac{3.62 \times 10^{-30} \text{ Cm}}{3.34 \times 10^{-30} \text{ Cm}}$ $= 1.08 \text{ D}$ $11a(i)$ NO_2^+ $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + H_3O_4^-$ $HNO_3^+ + H_2SO_4^-$ $Concentrated sulphuric acid and forms the electrophile nitronium NO_2^+ ion H=000000000000000000000000000000000000$	10c(ii)1.08 $Q = 2.848 \times 10^{-20} C$ $\mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} m = 3.62 \times 10^{-30} C m$ $3.34 \times 10^{-30} C m = 1 D$ $3.62 \times 10^{-30} C m = 1 D \times \frac{3.62 \times 10^{-30} C m}{3.34 \times 10^{-30} C m}$ $= 1.08 D$ 11a(i)NO2+Nitration electrophilic substitution reactions involve concentrated nitric acid and concentrated sulphuric acid and forms the electrophile nitronium NO2+ ion HNO3 + H2SO4 \longrightarrow NO2+ H3O' + H3O' + HSO4- concentrated sulphuric acid \longrightarrow NO2+ H3O' + H3O' + HSO4- ion11a(ii)A \bigoplus OH OH \bigoplus OH OH \bigoplus OH OHDecrease in the oxygen : hydrogen ratio $3 : 4$ 11bReductionDecrease in the oxygen : hydrogen ratio $0 : H ratioDecrease in the oxygen : hydrogen ratio3 : 4$			Q = partial charge ×	e = 0.178 x 1.60x10	$^{-19}C = 2.848 \times 10^{-20}C$			
$10c(ii)$ 1.08 $\mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} m = 3.62 \times 10^{-30} Cm$ $3.34 \times 10^{-30} Cm = 1 D$ $3.62 \times 10^{-30} Cm = 1 D \times \frac{3.62 \times 10^{-30} Cm}{3.34 \times 10^{-30} Cm}$ $= 1.08 D$ Nitration electrophilic substitution reactions involve concentrated nitric acid and concentrated sulphuric acid and forms the electrophile nitronium NO2 ⁺ ion HNO3 + H2SO4 → NO2 ⁺ + H3O ⁺ + HSO4 ⁻ $11a(ii)A \xrightarrow{\oplus} OH$ $11a(ii)B \xrightarrow{\oplus} OH$ $11a(ii)B \xrightarrow{\oplus} OH$ $11a(ii)B \xrightarrow{\oplus} OH$ DH DH DH DH DH DH DH D	$10c(ii) 1.08 \qquad \mu = Q \times r = 2.848 \times 10^{-20} C \times 1.27 \times 10^{-10} m = 3.62 \times 10^{-30} Cm$ $3.34 \times 10^{-30} Cm = 1 D$ $3.62 \times 10^{-30} Cm = 1 D \times \frac{3.62 \times 10^{-30} Cm}{3.34 \times 10^{-30} Cm}$ $= 1.08 D$ Nitration electrophilic substitution reactions involve concentrated nitric acid and concentrated sulphuric acid and forms the electrophile nitronium NO2 ⁺ ion $HNO_3 + H_2SO_4 \longrightarrow NO2^+ + H_3O^+ + H_5O_4^-$ $HNO_3 + H_2SO_4 \longrightarrow NO2^+ + H_3O^+ + H_5O_4^-$ $HNO_3 + H_2SO_4 \longrightarrow NO2^+ + H_3O^+ + H_5O_4^-$ $HNO_3 + H_2SO_4 \longrightarrow NO2^+ + H_3O^+ + H_5O_4^-$ $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + H_3O^+ + H_5O_4^-$ $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + H_3O^+ + H_5O_4^-$ $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + H_3O^+ + H_5O_4^-$ $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + H_3O^+ + H_5O_4^-$ $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + H_3O^+ + H_5O_4^-$ $HO_4 \longrightarrow H_1^+ \oplus H_2^- \oplus H_1^- \oplus H_2^-$ $HO_4 \longrightarrow H_1^- \oplus H_2^- \oplus H_2^- \oplus H_2^-$ $HO_4 \longrightarrow H_1^- \oplus H_2^- \oplus H_2^- \oplus H_2^- \oplus H_2^-$ $HO_4 \longrightarrow H_1^- \oplus H_2^- \oplus H_2^-$ $HO_4 \longrightarrow H_1^- \oplus H_2^- \oplus $								
$10C(ii) 1.08$ $3.34 \times 10^{-30} \text{ Cm} = 1 \text{ D}$ $3.62 \times 10^{-30} \text{ Cm} = 1 \text{ D} \times \frac{3.62 \times 10^{-30} \text{ Cm}}{3.34 \times 10^{-30} \text{ Cm}}$ $= 1.08 \text{ D}$ $11a(i) \text{ NO}_2^+ \text{ HOO}_3 + \text{ H}_2\text{ SO}_4 \longrightarrow \text{ NO}_2^+ + \text{ H}_3\text{ O}^+ + \text{ HSO}_4^-$ $11a(ii) \text{ OH} \qquad \qquad$	$10C(ii) 1.08 = 3.34 \times 10^{-30} \text{ Cm} = 1 \text{ D}$ $3.34 \times 10^{-30} \text{ Cm} = 1 \text{ D} \times \frac{3.62 \times 10^{-30} \text{ Cm}}{3.34 \times 10^{-30} \text{ Cm}}$ $= 1.08 \text{ D}$ $11a(i) \text{ NO}_2^+ \qquad \qquad$			•					
$11a(i) R = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 11a(ii) R \\ 11a(ii) R \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$11a(ii)B \xrightarrow{\bigoplus}{OH} 0H = 1D$ $3.34 \times 10^{-30} Cm = 1D \times \frac{3.62 \times 10^{-30} Cm}{3.34 \times 10^{-30} Cm} = 1.08 D$ $11a(ii)B \xrightarrow{\bigoplus}{OH} 0H = 11a(ii)B \xrightarrow{\bigoplus}{OH} 0H = 11a(i$	10c(ii)	1.08	μ = Q x r = 2.848>	$(10^{-20} C \times 1.27 \times 10^{-10})$	m = 3.62×10 ⁻³⁰ Cm			
$11a(i) \qquad \qquad$	$11a(i) \qquad \qquad$			3.34×10 ⁻³⁰					
$11a(i) \qquad \qquad$	$11a(i) \qquad \qquad$			3.62×10 ⁻³⁰	$Cm = 1D \times \frac{1}{2}$	3.62×10^{-30} Cm			
11a(i) NO2* Nitration electrophilic substitution reactions involve concentrated nitric acid and concentrated sulphuric acid and forms the electrophile nitronium NO2* ion 11a(i) NO2* HNO3 + H2SO4 → NO2* + H3O* + HSO4 - hydrogensulphate ion 11a(ii)A \bigcirc OH → OH	11a(i) NO2* Nitration electrophilic substitution reactions involve concentrated nitric acid and concentrated sulphuric acid and forms the electrophile nitronium NO2* ion 11a(i) NO2* HNO3 + H2SO4 recentrated intric acid and forms the electrophile nitronium hydrogensulphate ion hydrogensulphate ion 11a(ii)A H<					5.54X10 CM			
11a(i) NO2+ concentrated sulphuric acid and forms the electrophile nitronium NO2* ion HNO3 + H2SO4 recentrated nitric acid NO2+ H3O+ HSO4- hydrogensulphate ion hydrogensulphate ion 11a(ii)A \bigcirc OH oH \bigcirc OH ion ion 11a(ii)B \bigcirc OH oH \bigcirc OH \bigcirc OH ion ion 11a(ii)B \bigcirc OH \bigcirc OH \bigcirc OH \bigcirc OH \bigcirc OH \bigcirc OH 11a(ii)B \bigcirc OH	11a(i) NO2* concentrated sulphuric acid and forms the electrophile nitronium NO2* ion HNO3 + H2SO4 → NO2* + H3O* + HSO4 ⁻ nitronium hydronium I1a(ii)A \bigcirc								
11a(i) NO2* HNO3 + H2SO4 concentrated sulphuric acid NO2* + H3O* + HSO4-hydrogensulphate ion 11a(ii)A \bigcirc OH	11a(i) NOz* HNO3 + H2SO4 concentrated nitric acid NO2* + H3O ⁺ + HSO4 ⁻ hydronium ion HSO4 ⁻ hydrogensulphate ion 11a(ii)A \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 11a(ii)B \bigcirc 11a(ii)B \bigcirc			•					
Concentrated nitric acid concentrated sulphuric acid nitronium ion hydronium ion hydrogensulphate ion 11a(ii)A Image: Concentrated of H Image: Concentrated sulphuric acid Image: Concentrated ion	11a(ii)A Image: Concentrated nitro acid nitronium ion hydronium ion hydrogensulphate ion 11a(ii)A Image: Concentrated nitric acid sulphuric acid nitronium ion hydrogensulphate ion 11a(ii)A Image: Concentrated nitric acid sulphuric acid nitronium ion hydrogensulphate ion 11a(ii)A Image: Concentrated nitric acid Sulphuric acid nitronium ion hydrogensulphate ion 11a(ii)B Image: Concentrated nitric acid Image: Concentrated nitric acid Image: Concentrated nitric acid Image: Concentrated nitric acid 11a(ii)B Image: Concentrated nitric acid Image: Concentrated nitric acid Image: Concentrated nitric acid Image: Concentrated nitric acid 11a(ii)B Image: Concentrated nitric acid Image: Concentrated nitric acid Image: Concentrated nitric acid Image: Concentrate ion 11a(ii)B Reduction Image: Concentrate ion Image: Concentrate ion Image: Concentrate ion Image: Concentrate ion 11b Reduction Image: Concentrate ion Image: Concentrate ion Image: Concentrate ion Image: Concentrate ion 11b Reduction Image: Concentrate ion Image: Concentrate ion Image: Concentrate ion	11a (i)	NO ₂ +		•				
11a(ii)A \bigcirc	11a(ii)A $\stackrel{\oplus}{\longrightarrow}$ 11a(ii)B $\stackrel{\oplus}{\longrightarrow}$ $\stackrel{\oplus}{\longrightarrow}$ $\stackrel{\oplus}{\longrightarrow}$ 11a(ii)B $\stackrel{\oplus}{\longrightarrow}$	110(1)							
11a(ii)A \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 11a(ii)B \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 11a(ii)B \bigcirc	11a(ii)A H 11a(ii)B H			nitric acid sulphuric acid	ion				
$11a(ii)B = \begin{array}{c} \textcircled{0}\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH$	Image: 11a(ii)B Image: Book of the system is a system of the system is a system of the system is a system of the		OH ⊕						
$11a(ii)B = \bigcirc OH \\ OH \\$	Image: 11a(ii)B Image: Book of the system is a system of the system is a system of the system is a system of the								
$11a(ii)B = \begin{array}{c} \textcircled{0}\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH\\ OH$	Image: 11a(ii)B Image: Book of the system is a system of the system is a system of the system is a system of the	11 n (ii) A							
11a(ii)B OH Decrease in the oxygen : hydrogen ratio 11b Reduction	11a(ii)B OH Image: Decrease in the oxygen : hydrogen ratio Decrease in the oxygen : hydrogen ratio Formula $C_6H_4O_3$ C_6H_7O O : H ratio 3 : 4								
11a(ii)B OH Decrease in the oxygen : hydrogen ratio 11b Reduction	11a(ii)B OH Image: Decrease in the oxygen : hydrogen ratio Decrease in the oxygen : hydrogen ratio Formula $C_6H_4O_3$ C_6H_7O O : H ratio 3 : 4								
11a(ii)B OH Decrease in the oxygen : hydrogen ratio 11b Reduction	11a(ii)B OH Image: Decrease in the oxygen : hydrogen ratio Decrease in the oxygen : hydrogen ratio Formula $C_6H_4O_3$ C_6H_7O O : H ratio 3 : 4								
11a(ii)B Image: Second state	11a(ii)BImage: Decrease in the oxygen : hydrogen ratio11bReduction $C_6H_4O_3$ C_6H_7O 0 : H ratio3 : 4		⊕ ⊖H						
Decrease in the oxygen : hydrogen ratio The Reduction Formula C ₆ H ₄ O ₃	Image: Decrease in the oxygen : hydrogen ratioReductionFormulaC6H4O3C6H7O0 : H ratio3 : 4								
Decrease in the oxygen : hydrogen ratio The Reduction Formula C ₆ H ₄ O ₃	Image: Decrease in the oxygen : hydrogen ratioReductionFormulaC6H4O3C6H7O0 : H ratio3 : 4	11a(ii)B							
11b Reduction Formula C ₆ H ₄ O ₃ C ₆ H ₇ O	11b Reduction Formula $C_6H_4O_3$ C_6H_7O O: H ratio $3:4$								
11b Reduction Formula C ₆ H ₄ O ₃ C ₆ H ₇ O	11b Reduction Formula $C_6H_4O_3$ C_6H_7O O: H ratio $3:4$								
11b Reduction Formula C ₆ H ₄ O ₃ C ₆ H ₇ O	11b Reduction Formula $C_6H_4O_3$ C_6H_7O O: H ratio $3:4$		~	Decrease	in the oxygen : hydr	ogen ratio			
	O: H ratio	116	Deduction						
			Reduction	0 · H natio	3:4				
	1:1.33 1:7				1:1.33	1:7			
	O: H ratio	116	Reduction		$C_6H_4O_3$				

11c	Ethanoic acid ^{or} Ethanoic anhydride Ethanoyl chloride	Amines react with carboxylic acids to form alkylammonium salts and form an amide when heated.					
11d	Answer to include:	2 marks for all 4 points in table. 1 mark for 2 or 3 points in					in table
110	Answer to include.	minimum/small volume (of solvent) hot water/solvent			vent	cool	filter
11e(i)A	C=O or Carbonyl						
11e(i)B	Overlap of peaks from different bonds with one example as shown:	O-H peak in same region as $\begin{cases} N-H \\ C-H \end{cases}$ or N-H peak in same region as $\begin{cases} O-H \\ C-H \end{cases}$					
11e(ii)A	CH ₃ -C=O circled:	Chemical Shift (ppm) Height of Curve (mm)	2.1 50	6.7 33	7.3	9.1 17	9.8 17
		No of Hydrogens in Group Multiplet	3 singlet	2 doublet	2 doublet	1 singlet	1 singlet
11e(ii)B	Doublet Doublet	No of Hydrogen next door Group	0 CH₃C=0	2 ArH?		0 -HN-C=O	0 Ar-OH
11e(iii)A	Sample is pure with no extra peaks or only 5 (hydrogen) peaks	The same number of peaks with the same chemical shift indicated the sample is pure as contaminants would add other peaks to the NMR spectrum as they would containing other chemical groups.					
11e(iii)B	Mixed melting point or TLC or Chromatography	The melting point of the recrystalised paracetamol is measured using melting point apparatus. Pure paracetamol is added to see if the melting point is the same. If the melting point alters then the sample is not pure.					

- - - - - - - - -

OH turns

in C=O

Η

Ĥ

Н

Ĥ

Η

Η

Η